Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Soutenance de thèse

Iterated Monodromy Groups and Transcendental Dynamics

Bernhard Reinke
I2M, Aix-Marseille Université
/user/bernhard.reinke/

Date(s) : 30/06/2021   iCal
16h30 - 18h30

(presentation en anglais)
Titre: Groupes de monodromie itérée et dynamique transcendante
Directeur de thèse: Dierk Schleicher
Composition du jury:
Mario Bonk, UCLA
Laurent Bartholdi, Universität Göttingen
Mikael de la Salle, ENS Lyon
Anna Erschler, ENS Paris
Peter Haïssinsky, Aix-Marseille Université
Mikhail Hlushchanka, Aix-Marseille Université & Universiteit Utrecht
Rostislav Grigorchuk, Texas A&M University
Volodymyr Nekrashevych, Texas A&M University
Tatiana Smirnova-Nagnibeda, Université de Genève
Dylan Thurston, Indiana University Bloomington
Résumé: 
Les groupes de monodromie itérée relient la dynamique rationnelle et la théorie géométrique des groupes. Dans cette thèse, nous étendons cette connexion à la dynamique transcendante.
Nous introduisons les groupes de monodromie itérée pour les fonctions entières post singulièrement finies et les étudions comme des groupes autosimilaires sur des alphabets infinis.
En utilisant l’existence d’araignées périodiques, nous donnons un modèle combinatoire des groupes de monodromie itérée en termes d’automates dendroïdes, généralisant la description pour les polynômes post singulièrement finis.
La classe des applications de la famille exponentielle est discutée en détail, avec une description explicite en termes des suites de tricotage.
Nous introduisons un critère de moyennabilité pour les groupes générés par des automates d’activité bornée sur des alphabets infinis, et nous utilisons ce critère pour montrer que le groupe de monodromie itérée d’une fonction entière post-singulièrement finie est moyennable si et seulement si son groupe de monodromie l’est.
Lien : theses.fr
————————————————-
PhD defense
Title: Iterated Monodromy Groups and Transcendental Dynamics
Abstract:
In this thesis we extend this connection to transcendental dynamics.
We introduce iterated monodromy group for post-singularly finite entire functions and study them as self-similar groups with infinite alphabets.
Using the existence of periodic spiders, we give a combinatorial model of the iterated monodromy groups in terms of dendroid automata, generalizing the description for post-singularly finite polynomials.
We discuss the class of functions in the exponential family, with an explicit description in terms of the kneading sequence.
We introduce an amenability criterion for groups generated by bounded activity automata on infinite alphabets, and use the criterion to show that the iterated monodromy group of a post-singularly finite entire function is amenable if and only if its monodromy group is.

Emplacement
Saint-Charles - FRUMAM (2ème étage)

Catégories

Tags :

Secured By miniOrange