Hypersurfaces de Harnack
Erwan Brugallé
Université de Nantes
http://erwan.brugalle.perso.math.cnrs.fr/
Date(s) : 23/10/2025 iCal
11h00 - 12h00
En 1876, Axel Harnack démontre dans un article fondateur
1. que toute courbe algébrique réelle de degré d dans RP^2 a au plus (d-1)(d-2)/2+1 composantes connexes.
2. qu’il existe pour tout d une courbe de degré d avec ce nombre de composantes connexes.
Ces résultats sont à la base de moult travaux en topologie des variétés algébriques réelle ces 149 dernières années. La première partie de théorème de Harnack se généralise en l’inégalité dite de Klein-Floyd (aussi appelée Smith-Thom, ou Smith-Floyd, ou encore Smith-Thom-Milnor) pour les variétés algébriques réelles quelconques: la somme des nombres de Betti de la partie réelle est au plus la somme correspondante pour la partie complexe. Malgré de spectaculaires avancées, la généralisation de la deuxième partie du théorème de Harnack reste toujours ouverte dans le cas des hypersurfaces projectives. Pour ces dernières, Itenberg et Viro ont néanmoins montré que l’inégalité de Klein-Floyd est asymptotiquement optimale en utilisant la technique du patchwork combinatoire. Dans un travail en commun avec Michele Ancona et Jean-Yves Welschinger, nous montrons qu’une généralisation élémentaire de la méthode de construction originelle de Harnack en dimension 2 permet d’obtenir cette optimalité asymptotique pour tout fibré en droite ample sur une variété algébrique réelle. Au delà des nombres de Betti, nous décrivons aussi le type de difféomorphisme d’un ouvert de ces hypersurfaces à la topologie riche.
Emplacement
I2M Saint-Charles - Salle de séminaire
Catégories



