Coefficients de Fourier de mesures continues sur la suite de Furstenberg
Sophie Grivaux
Laboratoire Paul Painlevé, Université de Lille
http://math.univ-lille1.fr/~grivaux/
Date(s) : 05/07/2018 iCal
14h30 - 15h30
Fourier coefficients of continuous measurements on the Furstenberg sequence
I will explain how to construct continuous probability measures on the unit circle whose sequence of Fourier coefficients is reduced in modulus over the set {2k3l; k, l ≥ 1}. This result invalidates a conjecture by R. Lyons, motivated by the Furstenberg Conjecture concerning the invariant × 2 and × 3 measures on the circle. This is a work in collaboration with Catalin Badea (Lille).
[su_spacer size= »10″]
Catégories