Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Cycles spéciaux dans certaines variétés arithmétiques et démonstration de la conjecture de Noether-Lefschetz




Date(s) : 15/09/2015   iCal
14h00 - 15h00

Le théorème de Torelli pour les surfaces K3 identifie l’espace des modules $\mathcal{K}_g$ des surfaces K3 quasi-polarisées de genre g à un quotient arithmétique (associé au groupe orthogonal O(2,19)). Via cette identification les cycles de Noether-Lefschetz, qui paramètrent les surfaces K3 dont le groupe de Picard contient une classe supplémentaire particulière, correspondent aux cycles spéciaux de Kudla et Millson. J’expliquerai qu’en petit degré, les cycles spéciaux engendrent toute la cohomologie rationnelle des quotients arithmétiques associés aux groupes orthogonaux. En particulier, les cycles de Noether-Lefschetz engendrent le groupe de Picard rationnel de $\mathcal{K}_g$; résultat conjecturé par Maulik et Pandharipande. Ce travail effectué avec Zhiyuan Li, John Millson et Colette Moeglin, utilise la classification endoscopique des représentations automorphes des groupes orthogonaux par Arthur, et repose donc sur la (récente) stabilisation de la formule des traces tordue par Moeglin et Waldspurger.

[http://webusers.imj-prg.fr/~nicolas.bergeron/Accueil.html]

Catégories Pas de Catégories


Secured By miniOrange