Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Séminaire

Immersion dans les géométries de Thurston

Remy Coulon
Université de Rennes 1
https://rcoulon.perso.math.cnrs.fr/

Date(s) : 23/09/2022   iCal
11h00 - 12h00

La conjecture de géométrisation de Thruston, démontrée par Perelmann, stipule que toute variété de fermée, orientable et indécomposable de dimension 3 peut être découpée selon des tores, de telle sorte que l’intérieur de chaque sous-variété ainsi obtenue admette une structure géométrique de volume fini.
Les géométries modèles impliquées dans ces structures sont au nombre de huit, connues sous le nom de géométries de Thurston: l’espace euclidien $\mathbf E^3$, la sphère $S^3$, l’espace hyperbolique $\mathbf H^3$, les géométries produits $S^2 \times \mathbf E$ et $\mathbf H^2 \times \mathbf E$, les groupes de Lie Nil et Sol et enfin le revêtement universel de ${\rm SL}(2, \mathbf R)$.
Avec mes collaborateurs, nous avons développé une application permettant de simuler en temps réel ce que verraient les « habitants » de chacune de ces géométries. 
Dans cet exposé on expliquera la stratégie mise en œuvre pour réaliser ce programme, et le problèmes mathématiques que cela soulève.
On utilisera ensuite l’application pour illustrer quelques propriétés parfois déconcertantes de la géométrie Nil.
[su_spacer size= »10″]Travail en commun avec Sabetta Matsumoto, Henry Segerman et Steve Trettel.
[su_spacer size= »10″]
Website: http://www.3-dimensional.space/

Emplacement
Saint-Charles - FRUMAM (2ème étage)

Catégories

Tags :

Secured By miniOrange