Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Groupe de travail

Isopérimétrie quantitative pour périmètres fractionnaires et potentiels de Riesz




Date(s) : 26/06/2014   iCal
16h00 - 17h00

Nous discuterons dans cet exposé l’isopérimétrie des boules pour la fonctionnelle « périmètre fractionnaire d’ordre s » introduite par Caffarelli, Roquejoffre et Savin. Nous expliquerons de façon élémentaire comment obtenir une inégalité isopérimètrique quantitative optimale pour ce type de périmètres par une approche due à Fuglede combinée à une théorie de régularité adaptée. Nous montrerons enfin comment utiliser ce type d’inégalités pour démontrer l’existence de minima à volume petit pour le problème variationnel suivant : « Trouver un ensemble E de volume donné minimisant la fonctionnelle périmètre + potentiel de Riesz ». Il s’agit d’un travail en collaboration avec A. Figalli, N. Fusco, M. Morini, et F. Maggi.

https://www.ljll.math.upmc.fr/~millot/

Catégories


Secured By miniOrange