Nombres d’approximation des opérateurs de composition sur les espaces de Hardy de la boule ou du polydisque
Hervé Queffélec
Université de Lille
https://www.eyrolles.com/Accueil/Auteur/herve-queffelec-33959/
Date(s) : 19/10/2015 iCal
10h00 - 11h00
Approximate numbers of the composition operators on the Hardy spaces of the ball or the polydisk
Let Ω be a symmetric bounded domain of ℂd et φ : Ω → Ω analytic, inducing a composition operator Cφ, formally We are interested in the possible action of Cφ on the spaces of Hardy or Bergman H2(Ω) ou B2(Ω), in particular its compactness, its belonging to Schatten classes, and more precisely its approximation numbers. The case d = 1 is fairly well understood, the one where d ≥ 2 much less. We will present the first results obtained in this multidimensional case, and will show in particular that the approximation numbers strongly depend on the dimension. This is a joint work with F. Bayart, D. Li, L. Rodriguez-Piazza.
Catégories