Propriétés de concavité du volume parallèle
Arnaud Marsiglietti
Laboratoire d’Analyse et Mathématiques Appliquées (LAMA), Marne-la-Vallée
https://people.clas.ufl.edu/amarsiglietti/
Date(s) : 16/06/2014 iCal
10h00 - 11h00
Concavity properties of parallel volume
In the 1980s, Costa and Cover highlighted analogies between information theory and Brunn-Minkowski theory. They then conjectured that the n-th root of the parallel volume function of any compact set of R^n is concave, as an analogue of the concavity of exponential entropy. In this talk, we study this conjecture and discuss possible generalizations.
https://tel.archives-ouvertes.fr/CV_LAMA_UMR8050/hal-00843200v3
Catégories