Seuil d’inversibilité dans les quotients de la classe de Nevenlinna
Pascal Thomas
IMT, Université de Toulouse III-Paul Sabatier
https://www.math.univ-toulouse.fr/~thomas/
Date(s) : 17/02/2020 iCal
10h00 - 11h00
Invertibility threshold in the quotients of the Nevenlinna class
We consider an element [f] of the quotient algebra N / BN, where N is the Nevanlinna class of the disk, and B a Blaschke product. Then [f] is entirely determined by restricting the function f to the set Z (B) of zeros in B. If [f] is invertible in N / BN, then -log | f | is bounded on Z (B) by the values of a positive harmonic function H. We study the set of positive harmonic functions which, for a given B, allow the reciprocal, i.e. provide a sufficient condition d ‘invertibility; they must be lower than certain « threshold functions » (joint work with Artur Nicolau).
https://arxiv.org/abs/1904.06908
Catégories