Suites uniformément distribuées engendrées par des points fixes de morphismes binaires
Anna Frid
I2M, Aix-Marseille Université
/user/anna.frid/
Date(s) : 26/01/2016 iCal
11h05 - 12h00
Ceci est un travail avec S. V. Avgustinovich et S. Puzynina.
On associe à un mot infini uniquement ergodique sur un alphabet ordonné une suite uniformément distribuée sur [0,1] de nombres réels dont l’ordre correspond à ceci des décalages du mot. Cette transformation a été introduite dans notre papier présenté au WORDS 2015 et indépendamment par Narbel et Lopez (2016).
Pour tout point fixe apériodique uniquement ergodique d’un morphisme binaire nous décrivons le morphisme sur les nombres qui engendre la suite uniformément distribuée appropriée. Ce résultat généralise ceci de Makarov (2009) sur le mot de Thue-Morse.
Uniformly distributed sequences generated by fixed points of binary morphisms
This is a work with S. V. Avgustinovich and S. Puzynina.
One associates with an infinite word only ergodic on an ordered alphabet a sequence uniformly distributed on [0,1] of real numbers whose order corresponds to this of the shifts of the word. This transformation was introduced in our paper presented at WORDS 2015 and independently by Narbel and Lopez (2016).
For any uniquely ergodic aperiodic fixed point of a binary morphism we describe the morphism on numbers which generates the appropriate uniformly distributed sequence. This result generalizes that of Makarov (2009) on the word of Thue-Morse.
https://hal.archives-ouvertes.fr/hal-01221426
Catégories