Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Sur l’orthogonalité entre les fonctions multiplicatives et les observables déterministes en théorie ergodique




Date(s) : 25/11/2016   iCal
11h00 - 12h00

Soit $\mu$ la fonction arithmétique de Moebius déterminée par la série de Dirichlet de l’inverse da la fonction $\zeta$ de Riemann.
En 2010, Peter Sarnak a formulé une conjecture sur l’orthogonalité entre $\mu$ et les observables déterministes données par les systèmes dynamiques:
$$
\lim_{N\to\infty}\frac1N\sum_{n\leq N} f(T^nx)\mu(n)=0,
$$
pour tout système dynamique $(T,X)$ d’entropie nulle, toute fonction continue $f\in C(X)$ et tout $x\in X$.
L’exposé sera consacré a une presentation de l’importance de la conjecture de Sarnak (lien avec la fameuse conjecture de Chowla), de ses liens avec la dynamique topologique et la théorie des couplages en théorie ergodique, et des conséquences en théorie des nombres.

http://www-users.mat.umk.pl/~mlem/

Catégories Pas de Catégories


Secured By miniOrange