Théorème de la Couronne pour les quotients de l’espace de Nevanlinna
Pascal Thomas
IMT, Université Paul Sabatier, Toulouse
https://www.math.univ-toulouse.fr/~thomas/
Date(s) : 05/03/2018 iCal
10h00 - 11h00
Crown theorem for the quotients of Nevanlinna space
Gorkin-Mortini-Nikolskii introduced the Weak Embedding Property (WEP) to characterize the absence of a crown and the control of the norms of the inverses for the quotients of the algebra of bounded analytic functions. We define an analogue of WEP for the Nevanlinna class. It only depends on the zeros of the function by which we quotient. We show that this N-WEP is verified if and only if the zeros are a finite union of interpolation sequences for the Nevanlinna class, which contrasts with the situation for bounded functions (joint work with Xavier Massaneda and Artur Nicolau).
https://arxiv.org/abs/1804.03536
Catégories