
Maxime • Hauray
Maître de Conférences (MCF H) • Affiliation : Aix-Marseille Université (AMU)
Site : Saint-Charles • Bureau : E-03 • Etage du bureau : 1 (bât. 8) •
Responsable suppléant du groupe AA (depuis le 01/09/2014).
Groupe(s) scientifiques(s) de l'utilisateur :
Thématiques scientifiques :
- Équations cinétiques
- EDP elliptiques
- EDP parabolique, dynamique des populations
- Mathématiques pour l'évolution et la biologie
- Mécanique des fluides
- Modélisation, équations liées à la biologie
- Probabilités
Publications HAL
2017/02 - Rigorous derivation of Lindblad equations from quantum jumps processes in 1D2016/11 Annals of Probability - Propagation of chaos for the Landau equation with moderately soft potentials
2016/03 Journal of Statistical Physics - Uniform Contractivity in Wasserstein Metric for the Original 1D Kac’s Model
2016/01 Comptes Rendus. Mathématique - The effective Vlasov-Poisson system for strongly magnetized plasmas
2016/01 Communications in Mathematical Sciences - De coherence for a heavy particle interacting with a light one: new analysis and numerics
2015/11 - Propagation of chaos for the Vlasov-Poisson-Fokker-Planck system in 1D
2015/10 - Mean-field limit for collective behavior models with sharp sensitivity regions
2015/01 Communications in Mathematical Physics - Stability issues in the quasineutral limit of the one-dimensional Vlasov-Poisson equation
2015/01 Annales Scientifiques de l'École Normale Supérieure - Particles approximations of Vlasov equations with singular forces : Propagation of chaos
2014/06 - Local well-posedness of the generalized Cucker-Smale model
2014/01 Journal of Functional Analysis - ON KAC'S CHAOS AND RELATED PROBLEMS
2014/01 Journal of the European Mathematical Society - Propagation of chaos for the 2D viscous vortex model
2013/09 - Mean field limit for the one dimensional Vlasov-Poisson equation
2013/04 - The derivation of Swarming models: Mean-Field Limit and Wasserstein distances
2011/07 Annales de l'Institut Henri Poincaré C, Analyse non linéaire - WELL-POSEDNESS OF A DIFFUSIVE GYROKINETIC MODEL
2011/01 Annali di Matematica Pura ed Applicata - A new proof of the uniqueness of the flow for ordinary differential equations with BV vector fields
2010/12 Kinetic and Related Models - Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solutions
2010/07 Journal of Statistical Mechanics: Theory and Experiment - Stability of trajectories for N -particles dynamics with singular potential
2009/04 - A new proof of the uniqueness of the flow for ordinary differential equations with BV vector fields
2007/10 Comptes Rendus. Mathématique - Two remarks on generalized flows for ordinary differential equations
2007/04 - Approximation of Euler-type equations by systems of vortices
2005/01 Communications in Partial Differential Equations - On Liouville transport equation with a force field in $BV_{loc}$
2003/10 - N particles approximation of the Vlasov equations with singular potential.
2003/07 Annales de l'Institut Henri Poincaré C, Analyse non linéaire - On Two-dimensional Hamiltonian Transport Equations with $L^p_{loc}$ coefficients