Logo AMU

La Licence de Mathématiques
à l'Université d'Aix-Marseille

Accueil Parcours MG Parcours MB Parcours MI Parcours PS CUPGE Liste des UEs Annuaire
Navigation :
Informations :
Apparaît dans :
Responsables :

L'unité d'enseignement ENSMI5U7
« Histoire des mathématiques »

Objectifs :

Le but de ce cours est d’éveiller la curiosité des élèves en situant dans l’histoire les connaissances mathématiques qu’on leur demande d’acquérir. Ce cours permet d’avoir un accès direct à la gestation des concepts mathématiques en présence des textes et ouvrages originaux où des nouvelles idées sont exposées et une compréhension de la complexité pour créer de nouveaux concepts et de nouvelles méthodes.

Contenus :

Le propos de ce cours d’initiation à l’histoire des mathématiques est de faire comprendre la nature et la genèse des concepts mathématiques d’aujourd’hui. A partir du XIX siècle il s’est produit une véritable mutation en mathématiques par la création de nouvelles méthodes et de nouveaux objets bien différents des objets mathématiques classiques : les nombres et les figures. Cette abstraction accrue ne signifie aucunement une rupture avec le passé : les problèmes à résoudre ne sont que l’héritage de l’âge classique ou de nouvelles acquisitions de la physique. Or, il n’est pas possible de comprendre l’évolution des mathématiques d’aujourd’hui si l’on n’a pas au moins une idée même sommaire de son histoire. Puisque les mathématiques actuelles font usage du concept d’ensemble infini, indispensable dans presque toutes les différentes branches de la mathématique, nous prendrons comme thème le concept d’infini qui n’a été complètement précisé qu’aux XIXème et début du XXème siècles. Nous n’allons parcourir qu’une infime partie de la longue évolution du concept qui a été marquée de difficultés et de controverses. Dans cette perspective, le cours s’organisera autour de trois repères significatifs du traitement de l’infini. Le premier serait l’infini comme obstacle. Le second, l’infini comme concept positif. Le troisième, l’infini comme tradition et nouveauté. C’est cette triple distinction qui servira de fil conducteur à la réflexion sur l’infini dans l’acte créateur des mathématiciens.

Contenu du cours.

Prérequis :

Aucun

Modalités de contrôle des connaissances :

Deux conditions à remplir pour la note qui servira à constituer votre note globale : Une série de contrôles continus CC et l'examen final E NF=MAX(E,(2*E+CC)/3)
Page en XHTML 1.0 strict et CSS 3.0  -  Générée le 10 Jun 2016 par gsf-math-1.5.tgz