Séminaires I2M
- Accueil
- Séminaires I2M
Séminaires par thème de recherche
- Séminaire Analyse Appliquée
- Séminaire Analyse et Géométrie
- Séminaire Arithmétique et Théorie de l’Information (ATI)
- Séminaire CENTURI (transverse)
- Séminaire CWS (Combinatorics on Words Seminar)
- Séminaire Doctorants CPT/I2M à Luminy
- Séminaire Doctorants Saint-Charles
- Séminaire Ernest
- Séminaire de Géométrie et de Topologie de Marseille
- Séminaire Hypatie (transverse PROBA Lyon-Marseille)
- Séminaire IOSSB (Interdisciplinary online seminar series on Biolocomotion)
- Séminaire Kifékoi
- Séminaire La Madeleine d’Euclide (inter-labos, FRUMAM)
- Séminaire Logique et Interactions
- Séminaire MABioS
- Séminaire Mathématiques, Évolution, Biologie (MEB)
- Séminaire Probabilités
- Séminaire Rauzy
- Séminaire Représentations des Groupes Réductifs (RGR)
- Séminaire Signal et Apprentissage (transverse)
- Séminaire Statistique
Événements passés
08
Nov
A. Rabaoui (Institut Fresnel) at CMI: Functional Data Analysis via Bayesian nonparametrics with application to signal classification
Functional Data Analysis via Bayesian nonparametrics with application to signal classification\nBy A. Rabaoui\, Institut Fresnel\, Marseille.\n\nIn many signal processing applications\, data collected are drawn from [...]
18
Oct
F. X Dupé (LIF): Toward a general greedy approach for sparse optimization
Toward a general greedy approach for sparse optimization\n\nBy François Xavier Dupé\, LIF.\n\nAbstract : Following recent works on greedy sparse minimization like\nCoSaMP or GRASP\, we propose [...]
18
Oct
Bob Sturm (Aalborg Univ. Copenhagen) : evaluation.
Evaluation.\n\nBy Bob Sturm\, Aalborg University Copenhagen.\n\nEvaluation. Evaluating evaluations.* Evaluation of evaluations and their evaluation. Evaluating. Evaluating evaluation and evaluation evaluating. Evaluations of evaluations and evaluating [...]
11
Oct
S. Loustau (LAREMA, Univ. Angers) at Frumam : Inverse Statistical Learning - From minimax to algorithm
Inverse Statistical Learning : From minimax to algorithm\n\nBy Sébastien Loustau\, LAREMA\, Univ. Angers.\n\nWe propose to consider the problem of statistical learning when we observe a [...]
10
Oct
04
Oct
M. E Bellemare (LATP-LSIS) at CMI: De l'imagerie diagnostique à la chirurgie. Ou en sommes nous ?
De l'imagerie diagnostique à la chirurgie. Ou en sommes nous ? Par Marc-Emmanuel Bellemare (LATP-LSIS) Je présenterai mon activité de recherche en imagerie médicale. J'utiliserai [...]
20
Sep
L. Duval (IFP) at Frumam (St Charles): Curvelets, contourlets, *lets, etc. : a panorama on 2D directional wavelets and multiscale geometric transforms
Curvelets, contourlets, *lets, etc. : a panorama on 2D directional wavelets and multiscale geometric transforms By Laurent Duval, IFP. Abstract: La quête des représentations optimales [...]
20
Sep
M. Marchand at CMI (Univ. Laval): algorithmes d'apprentissage et bornes sur le risque pour l'approche de la régression à la prédiction de structures
Algorithmes d'apprentissage et bornes sur le risque pour l'approche de la régression à la prédiction de structures\nBy Mario Marchand\, Université Laval\, Québec\, Canada.\n\nNous présentons des [...]
11
Juil
E. Vincent (INRIA) : comment interfacer séparation de sources et classification audio?
Comment interfacer séparation de sources et classification audio?\nBy Emmanuel Vincent\, Inria Nancy - Grand Est.\n\nOn considère le problème de la classification audio au sens large: [...]
04
Juil
R. Bailly (UPC) : Spectral Learning of Hidden Structure or "How NLP (Natural Language Processing) is just a matter of compressive sensing"
Spectral Learning of Hidden Structure or "How NLP (Natural Language Processing) is just a matter of compressive sensing."\nBy Raphaël Bailly\, Universitat Politècnica de Catalunya.\n\nThe spectral [...]
27
Juin
F. Angeletti (ENS Lyon): Critical order for moment estimation : insights from statistical physics.
Critical order for moment estimation : insights from statistical physics.\nBy Florian Angeletti ENS Lyon\n\nAbstract:\nMoment estimation is one of the most basic question in statistical signal [...]
27
Juin
S. Barbieri (LATP): Optimal Time-Frequency Bases for EEG Signal Classification in the Context of BCI.
Optimal Time-Frequency Bases for EEG Signal Classification in the Context of BCI. by Sebastiano Barbieri\n\nAbstract:\nWe consider the problem of classifying multi-sensor signals\, more\nprecisely EEG signals [...]
20
Juin
François Brucker (Centrale Marseille\, LIF): Latticial Approach for clustering problems
Latticial Approach for clustering problems\nBy François Brucker\, Centrale Marseille\, LIF.\n\nWe present a combinatorial model which generalizes phylogenetic trees. This model links together a graph model [...]
13
Juin
J. L. Romero (Nuhag\, Vienne): Frames adapted to a time-frequency cover
Frames adapted to a time-frequency cover\n\nBy Jose Luis Romero \, NuHag\, Vienna\n\nGiven a possibly irregular cover of the time-frequency\nplane\, we construct dictionaries of atoms whose [...]
06
Juin
C.-A. Azencott (Max Planck Institute) : Large scale network-guided feature selection in genome-wide association mapping
Large scale network-guided feature selection in genome-wide association mapping. By Chloé-Agathe Azencott, Max Planck Institute. Genome-wide association studies (GWAS)\, in which hundreds of thousands\nor millions [...]
06
Juin
P. Vandergheynst (EPFL): Robust image reconstruction from multi-view measurements
Robust image reconstruction from multi-view measurements.\nBy Pierre Vandergheynst\, EPFL.\n\nWe propose a novel method to accurately reconstruct a set of images representing a single scene from [...]
30
Mai
D. Vibert (LAM): Solar Rotational Tomography: reconstruction of the electronic density in the Solar Corona.
Solar Rotational Tomography: reconstruction of the electronic density in the Solar Corona.\n\nBy D. Vibert\, LAM\n\nAbstract:\nI will describe the concept of SRT applied to white light [...]
16
Mai
L. Moisan (MAP5): The Posterior Mean of the Total Variation model
The Posterior Mean of the Total Variation model\nBy Lionel Moisan\, MAP5.\n\nAbstract:\nThe Total Variation image (or signal) denoising model is a variational approach\nthat can be interpreted\, [...]
02
Mai
L. Ralaivola (LIF)
Title coming soon.\nBy Liva Ralaivola\, LIF.\n\nAbstract coming soon
25
Avr
R. Gribonval (INRIA Rennes) : Sparse dictionary learning in the presence of noise and outliers
Sparse dictionary learning in the presence of noise and outliers.\nBy Rémi Gribonval\, INRIA Rennes - Bretagne Atlantique.\n\nA popular approach within the signal processing and machine [...]