Localisation

Adresses

Aix-Marseille Université
Institut de Mathématiques de Marseille (I2M) - UMR 7373
Site Saint-Charles : 3 place Victor Hugo, Case 19, 13331 Marseille Cedex 3
Site Luminy : Campus de Luminy - Case 907 - 13288 Marseille Cedex 9

Les prochains séminaires de l'I2M

Événements passés

25 Avr

R. Gribonval (INRIA Rennes) : Sparse dictionary learning in the presence of noise and outliers

25/04/2013    
14h00 - 15h00
Sparse dictionary learning in the presence of noise and outliers.\nBy Rémi Gribonval\, INRIA Rennes - Bretagne Atlantique.\n\nA popular approach within the signal processing and machine [...]
11 Avr

H. Omer (LATP): Estimation of frequency modulations on wideband signals\, applications to audio signal analysis

11/04/2013    
14h00 - 15h00
Estimation of frequency modulations on wideband signals\, applications to audio signal analysis\n\nBy Harold Omer\, LATP.\n\nAbstract:\nThe problem of joint estimation of power spectrum and modulation from [...]
05 Avr

B. David (Télécom ParisTech) : Pédagogies innovantes actives - retour d'expérience et discussion

05/04/2013    
10h00 - 12h00
Pédagogies innovantes actives - retour d'expérience et discussion\nPar Bertrand David\, Télécom ParisTech.\n\nDownload slides\n\nAprès de plusieurs réformes de son cycle master (2A et 3A)\, Telecom Paristech [...]
04 Avr

C. Coiffard (IRMA\, Unistra): A Markov point process for Fiber extraction

04/04/2013    
14h00 - 15h00
A Markov point process for Fiber extraction\nBy Claire Coiffard\, IRMA\, Unistra.\n\n\nAbstract:\nThe aim of this work is to extract fibers in an image. We use a [...]
28 Mar

M. Kowalski (L2S): Social Sparsity: application to audio inpainting.

28/03/2013    
14h00 - 15h00
Social Sparsity: application to audio inpainting.\n\nBy Matthieu Kowalski\, L2S.\n\nAbstract:\nAudio inpainting problem is under consideration\, using iterative\nthresholding algorithms build on the "social sparsity" principle.\nFirst\, we present [...]
21 Mar

N. Chu (L2S): Bayesian approaches via sparsity enforcing priors for acoustic source imaging with robustness, super resolution and wide dynamic range

21/03/2013    
14h00 - 15h00
Bayesian approaches via sparsity enforcing priors for acoustic source imaging with robustness, super resolution and wide dynamic range. By Ning Chu, L2S. Acoustic imaging is [...]
14 Mar

Q. Barthelemy (CEA): Dictionary learning and application to EEG

14/03/2013    
14h00 - 15h00
Dictionary learning and application to EEG\n\nBy Quentin Barthelemy, CEA. This presentation addresses the issue of representing electroencephalographic (EEG) signals in an efficient way. While classical [...]
07 Mar

J. Lefèvre (LSIS): Harmonic analysis on manifolds: recent applications in neuroimaging data

07/03/2013    
14h00 - 15h00
Harmonic analysis on manifolds: recent applications in neuroimaging data By Julien Lefèvre, LSIS. This talk aims at introducing some mathematical tools of harmonic analysis on [...]
14 Fév

FREE SLOT (initial talk by B. Sturm (Aalborg Univ. Copenhagen) is postponed)

14/02/2013    
14h00 - 15h00
By Bob Sturm, Aalborg University Copenhagen. Abstract coming soon.
07 Fév

Y. Boursier (CPPM)\, on the article "PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming"

07/02/2013    
14h00 - 15h00
On the article "PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming", Emmanuel J. Candès, Thomas Strohmer and Vladislav Voroninski see the [...]
04 Fév

M. Unser (EPFL) Tutorial: Sparse stochastic processes and biomedical image reconstruction

04/02/2013    
14h00 - 16h00
By Michael Unser\, EPFL.\n\nTutorial: Sparse stochastic processes and biomedical image reconstruction\n\nSparse stochastic processes are continuous-domain processes that admit a parsimonious representation in some matched wavelet-like [...]
31 Jan

E. Vural (EPFL): Transformation-invariant analysis of visual signals with manifold models

31/01/2013    
14h00 - 15h00
Transformation-invariant analysis of visual signals with manifold models By Elif Vural, EPFL. Manifold models provide low-dimensional representations that are useful for processing and analyzing visual [...]
24 Jan

G. Gassier (IM2NP): Subspaces methods in passive radar

24/01/2013    
14h00 - 15h00
Subspaces methods in passive radar.\nBy Ghislain Gassier\, IM2NP.\nA bistatic passive Doppler radar system exploits already existing RF transmitters (illuminators of opportunity) to detect and localize [...]
10 Jan

P. Réfregier (Institut Fresnel): Cramer-Rao Bound and application to radar and optical polarimetry

10/01/2013    
14h00 - 15h00
Title: Cramer-Rao Bound and application to radar and optical polarimetry. By Philippe Réfregier, Institut Fresnel. During this talk, we will try to illustrate estimation precision [...]
13 Déc

J. Marchi (INS) : Fully unsupervised detection and clustering of EEG epileptic spikes

13/12/2012    
14h00 - 15h00
Fully unsupervised detection and clustering of EEG epileptic spikes. By Johann Marchi, INS. Nowadays, large amounts of electroencephalogram (EEG) data remain unexploited because of a [...]
Online confusion learning and passive-aggressive scheme.

Online confusion learning and passive-aggressive scheme.

Liva Ralaivola

22/11/2012    
14h00 - 15h00
Online confusion learning and passive-aggressive scheme By Liva Ralaivola, LIF. This work provides the first — to the best of our knowledge — analysis of [...]
15 Nov

E. Morvant (LIF): A Well-founded PAC-Bayesian Majority Vote applied to the Nearest Neighbor Rule

15/11/2012    
14h00 - 15h00
A Well-founded PAC-Bayesian Majority Vote applied to the Nearest Neighbor Rule\n\nBy Emilie Morvant\, LIF.\n\nThe Nearest Neighbor (NN) [1] rule is probably the best-known classification method. [...]
08 Nov

Full Signal and Machine Learning afternoon session for welcoming new members.

08/11/2012    
13h30 - 17h30
13h30 Optimization of High Dimensional Functions: Application to a Pulse Shaping Problem, Mattias Gybels, LIF. 14h Nonlinear functional data analysis with reproducing kernels, Hachem Kadri, [...]
18 Oct

Nelly PUSTELNIK - A multicomponent proximal algorithm for Empirical Mode Decomposition

A multicomponent proximal algorithm for Empirical Mode Decomposition. By Nelly Pustelnik, ENS Lyon The Empirical Mode Decomposition (EMD) is known to be a powerful tool [...]
27 Sep

Sylvain TAKERKART - Learning from structured fMRI patterns using graph kernels

Learning from structured fMRI patterns using graph kernels. (by Sylvain Takerkart, LIF). Classification of medical images in multi-subjects settings is a difficult challenge due to [...]
Secured By miniOrange