Séminaires I2M
- Accueil
- Séminaires I2M
Séminaires par thème de recherche
- Séminaire Analyse Appliquée
- Séminaire Analyse et Géométrie
- Séminaire Arithmétique et Théorie de l’Information (ATI)
- Séminaire CENTURI (transverse)
- Séminaire CWS (Combinatorics on Words Seminar)
- Séminaire Doctorants CPT/I2M à Luminy
- Séminaire Doctorants Saint-Charles
- Séminaire Ernest
- Séminaire de Géométrie et de Topologie de Marseille
- Séminaire Hypatie (transverse PROBA Lyon-Marseille)
- Séminaire IOSSB (Interdisciplinary online seminar series on Biolocomotion)
- Séminaire Kifékoi
- Séminaire La Madeleine d’Euclide (inter-labos, FRUMAM)
- Séminaire Logique et Interactions
- Séminaire MABioS
- Séminaire Mathématiques, Évolution, Biologie (MEB)
- Séminaire Probabilités
- Séminaire Rauzy
- Séminaire Représentations des Groupes Réductifs (RGR)
- Séminaire Signal et Apprentissage (transverse)
- Séminaire Statistique
Événements passés
25
Avr
R. Gribonval (INRIA Rennes) : Sparse dictionary learning in the presence of noise and outliers
Sparse dictionary learning in the presence of noise and outliers.\nBy Rémi Gribonval\, INRIA Rennes - Bretagne Atlantique.\n\nA popular approach within the signal processing and machine [...]
11
Avr
H. Omer (LATP): Estimation of frequency modulations on wideband signals\, applications to audio signal analysis
Estimation of frequency modulations on wideband signals\, applications to audio signal analysis\n\nBy Harold Omer\, LATP.\n\nAbstract:\nThe problem of joint estimation of power spectrum and modulation from [...]
05
Avr
B. David (Télécom ParisTech) : Pédagogies innovantes actives - retour d'expérience et discussion
Pédagogies innovantes actives - retour d'expérience et discussion\nPar Bertrand David\, Télécom ParisTech.\n\nDownload slides\n\nAprès de plusieurs réformes de son cycle master (2A et 3A)\, Telecom Paristech [...]
04
Avr
C. Coiffard (IRMA\, Unistra): A Markov point process for Fiber extraction
A Markov point process for Fiber extraction\nBy Claire Coiffard\, IRMA\, Unistra.\n\n\nAbstract:\nThe aim of this work is to extract fibers in an image. We use a [...]
28
Mar
M. Kowalski (L2S): Social Sparsity: application to audio inpainting.
Social Sparsity: application to audio inpainting.\n\nBy Matthieu Kowalski\, L2S.\n\nAbstract:\nAudio inpainting problem is under consideration\, using iterative\nthresholding algorithms build on the "social sparsity" principle.\nFirst\, we present [...]
21
Mar
N. Chu (L2S): Bayesian approaches via sparsity enforcing priors for acoustic source imaging with robustness, super resolution and wide dynamic range
Bayesian approaches via sparsity enforcing priors for acoustic source imaging with robustness, super resolution and wide dynamic range. By Ning Chu, L2S. Acoustic imaging is [...]
14
Mar
Q. Barthelemy (CEA): Dictionary learning and application to EEG
Dictionary learning and application to EEG\n\nBy Quentin Barthelemy, CEA. This presentation addresses the issue of representing electroencephalographic (EEG) signals in an efficient way. While classical [...]
07
Mar
J. Lefèvre (LSIS): Harmonic analysis on manifolds: recent applications in neuroimaging data
Harmonic analysis on manifolds: recent applications in neuroimaging data By Julien Lefèvre, LSIS. This talk aims at introducing some mathematical tools of harmonic analysis on [...]
14
Fév
FREE SLOT (initial talk by B. Sturm (Aalborg Univ. Copenhagen) is postponed)
By Bob Sturm, Aalborg University Copenhagen. Abstract coming soon.
07
Fév
Y. Boursier (CPPM)\, on the article "PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming"
On the article "PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming", Emmanuel J. Candès, Thomas Strohmer and Vladislav Voroninski see the [...]
04
Fév
M. Unser (EPFL) Tutorial: Sparse stochastic processes and biomedical image reconstruction
By Michael Unser\, EPFL.\n\nTutorial: Sparse stochastic processes and biomedical image reconstruction\n\nSparse stochastic processes are continuous-domain processes that admit a parsimonious representation in some matched wavelet-like [...]
31
Jan
E. Vural (EPFL): Transformation-invariant analysis of visual signals with manifold models
Transformation-invariant analysis of visual signals with manifold models By Elif Vural, EPFL. Manifold models provide low-dimensional representations that are useful for processing and analyzing visual [...]
24
Jan
G. Gassier (IM2NP): Subspaces methods in passive radar
Subspaces methods in passive radar.\nBy Ghislain Gassier\, IM2NP.\nA bistatic passive Doppler radar system exploits already existing RF transmitters (illuminators of opportunity) to detect and localize [...]
10
Jan
P. Réfregier (Institut Fresnel): Cramer-Rao Bound and application to radar and optical polarimetry
Title: Cramer-Rao Bound and application to radar and optical polarimetry. By Philippe Réfregier, Institut Fresnel. During this talk, we will try to illustrate estimation precision [...]
13
Déc
J. Marchi (INS) : Fully unsupervised detection and clustering of EEG epileptic spikes
Fully unsupervised detection and clustering of EEG epileptic spikes. By Johann Marchi, INS. Nowadays, large amounts of electroencephalogram (EEG) data remain unexploited because of a [...]

Online confusion learning and passive-aggressive scheme.
Liva Ralaivola
Online confusion learning and passive-aggressive scheme By Liva Ralaivola, LIF. This work provides the first — to the best of our knowledge — analysis of [...]
15
Nov
E. Morvant (LIF): A Well-founded PAC-Bayesian Majority Vote applied to the Nearest Neighbor Rule
A Well-founded PAC-Bayesian Majority Vote applied to the Nearest Neighbor Rule\n\nBy Emilie Morvant\, LIF.\n\nThe Nearest Neighbor (NN) [1] rule is probably the best-known classification method. [...]
08
Nov
Full Signal and Machine Learning afternoon session for welcoming new members.
13h30 Optimization of High Dimensional Functions: Application to a Pulse Shaping Problem, Mattias Gybels, LIF. 14h Nonlinear functional data analysis with reproducing kernels, Hachem Kadri, [...]
18
Oct
Nelly PUSTELNIK - A multicomponent proximal algorithm for Empirical Mode Decomposition
A multicomponent proximal algorithm for Empirical Mode Decomposition. By Nelly Pustelnik, ENS Lyon The Empirical Mode Decomposition (EMD) is known to be a powerful tool [...]
27
Sep
Sylvain TAKERKART - Learning from structured fMRI patterns using graph kernels
Learning from structured fMRI patterns using graph kernels. (by Sylvain Takerkart, LIF). Classification of medical images in multi-subjects settings is a difficult challenge due to [...]