Familles denses de courbes modulaires, nombres premiers et rang de tenseur symétrique uniforme de la multiplication dans certains corps finis

Carte non disponible

Date/heure
Date(s) - 12/06/2018
11 h 00 min - 12 h 00 min

Catégories


Lors de cet exposé, nous présenterons de nouvelles bornes supérieures uniformes pour le rang de tenseur symétrique de la multiplication dans les extensions finies de tout corps fini $\F_p$ or $\F_{p^2}$ où $p$ est un nombre premier $\geq 5$.
Dans ce but, nous utilisons l’algorithme généralisé de type Chudnovsky symétrique appliqué sur des familles suffisamment denses de courbes modulaires définies sur $\F_{p^2}$ atteignant la borne de Drinfeld-Vladuts et aussi appliqué sur la descente de ces familles sur le corps de définition $\F_p$. Ces familles sont obtenues grâce à des théorèmes de densité des nombres premiers de type Hoheisel, en particulier un résultat dû à Dudek (2016). (Travail en collaboration avec Alexey Zykin)

Webpage“>Webpage

Olivier CHABROL
Posts created 14

Articles similaires

Commencez à saisir votre recherche ci-dessus et pressez Entrée pour rechercher. ESC pour annuler.

Retour en haut
Secured By miniOrange