Journée thématique HYPERBO 2023

Journée
FRUMAM, St Charles, Marseille
https://www.i2m.univ-amu.fr/agenda/groupes-de-travail/hyperbo/

Date(s) : 21/11/2023   iCal
9 h 30 min - 17 h 00 min

EDP hyperboliques, conditions limites et méthodes numériques
Hyperbolic PDEs, boundary conditions and numerical methods

Programme

9h : Accueil Café
10h – 11h15 : Bertrand Maury (Univ Paris Sud, ENS)
11h15 – 12h15 : Paola Goatin (INRIA Sophia Antipolis)
12h15 – 14h : Déjeuner (s’inscrire auprès des organisatrices)
14h – 15h15 : Carlotta Donadello (Univ Besançon)
15h15 – 16h30 : Charlotte Perrin (CNRS, Marseille)
16h30 : Clôture, discussions

Abstracts

Carlotta DonadelloConservation laws on a star-shaped network
Hyperbolic conservation laws defined on oriented graphs are widely used in the modeling of a variety of phenomena such as vehicular and pedestrian traffic, irrigation channels, blood circulation, gas pipelines, structured population dynamics. From the point of view of the mathematical analysis each of these situations demands for a different definition of admissible solution, encoding in particular the node coupling between incoming and outgoing edges which is the most coherent with physical observations.

A comprehensive study of the necessary and sufficient properties of the coupling conditions which lead to well-posedness of the corresponding admissible solutions is available in the framework of conservation laws with discontinuous flux, which can be seen as a simple $1-1$ network. A similar theory for conservation laws on star-shaped graph is at its beginning. In particular, the characterization of family of solutions obtained as limits of regularizing approximations, such as vanishing viscosity limits, is still a partially open problem. In this talk we’ll provide a general introduction to the topic, an overview of the most recent results and some explicit examples.


Paola Goatin : Nonlocal macroscopic models of multi-population pedestrian flows for walking facilities optimization
We propose a nonlocal macroscopic pedestrian flow model for several populations with different destinations trying to avoid each other in a confined environment, where the nonlocal term accounts for anisotropic interactions, mimicking the effect of different cones of view, and the presence of walls or other obstacles in the domain. In particular, obstacles can be incorporated in the density variable, thus avoiding to include them in the vector field of preferred directions.
The well posedness of the model is studied analytically and numerical tests confirm that each population manages to evade both the presence of the obstacles and the other populations.

Finally, we study the optimization of evacuation times. In particular, the optimal position of the obstacles is obtained using a total travel time minimisation processes.


Bertrand Maury : Mouvements de foules sociales : à la frontière du monde hilbertien

Un grand nombre de phénomènes physiques recèle une structure de flot de gradient, ou de de système hamiltonien (que l’on peut voir comme une version inertielle du flot de gradient).
Cela signifie qu’il existe une fonction sous-jacente des variables d’état (de positions s’il s’agit par exemple de particules), de type énergie potentielle dans un contexte mécanique, qui conditionne l’évolution du système. Dans la version non inertielle, l’état du système « glisse » suivant la ligne de plus grande pente de cette fonction, qui conditionne donc entièrement le comportement global du système. Lorsqu’il s’agit de particules, avec une fonctionnelle qui ne dépend que de leurs positions relatives, cette structure variationnelle implique un principe d’action réaction.
Nous proposons d’explorer le rôle joué par cette structure dans les modèles de mouvements de foules. Nous nous intéresserons en particulier aux limites possibles des modèles de type flot de gradient lorsque la métrique dégénère, conduisant à une violation du principe d’action-réaction qui est réaliste pour des entités dotées de capacités cognitives et décisionnelles.


Charlotte Perrin : Hard congestion limit of the p-system in the BV setting

In this talk, I will discuss the transition from a compressible (inviscid) system with singular pressure towards a mixed compressible-incompressible system modeling partially congested dynamics. The two systems may be used for the modeling of mixtures, of collective motions, or partially free surface flows. From the mathematical point of view, I will present a first convergence result for small BV perturbations of a reference state represented by one or more partially congested propagating fronts.



Organisation :
Raphaèle Herbin, Charlotte Perrin

Emplacement
FRUMAM, St Charles

Catégories



Retour en haut 

Secured By miniOrange