Le groupe du vertex tropical et invariants raffinés

Carte non disponible

Date/heure
Date(s) - 27/06/2016
14 h 00 min - 15 h 00 min

Catégories Pas de Catégories


Le groupe du vertex tropical de Kontsevich et Soibelman est engendré par des symplectomorphismes formels du tore algébrique 2-dimensionnel. En se basant sur le groupe du vertex tropical, Gross, Pandharipande et Siebert ont présenté une théorie de Gromov-Witten pour les plans projectifs à poids qui admet une expansion en termes de nombres tropicaux. Je décrirai un raffinement ou “q-déformation” de cette expansion, en utilisant les invariants de Block-Göttsche. Cela conduit naturellement à la définition d’une classe d’invariants q-déformés. Nous montrons que cela coïncide avec une autre q-déformation naturelle, fournie par un résultat de Reineke et Weist dans le contexte des représentations des​ carquois, dans les cas où celui-ci s’applique bien. Il s’agit d’un travail en commun avec Jacopo Stoppa.

Webpage“>Webpage

Olivier CHABROL
Posts created 14

Articles similaires

Commencez à saisir votre recherche ci-dessus et pressez Entrée pour rechercher. ESC pour annuler.

Retour en haut
Secured By miniOrange