Conference
CIRM, Luminy, Marseille
https://www.chairejeanmorlet.com/1351.html
Date(s) : 23/05/2016 - 27/05/2016 iCal
0 h 00 min
CIRM – Jean-Morlet Chair
Dipendra PRASAD – Volker HEIERMANN
Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms
Aspects relatifs en théorie de la représentation, fonctorialité de Langlands et formes automorphes
Relative Trace Formula, Periods, L-Functions, Harmonic Analysis, and Langlands Functoriality (1351)
Formule des traces relatives, Périodes, Fonctions L, analyse harmonique et fonctorialité de Langlands
Dates: 23-27 May 2016 at CIRM (Marseille Luminy, France)
DESCRIPTION
Automorphic forms and Langlands fonctoriality is a very active area of contemporary international mathematical research at the cross-roads of number theory, representation theory, arithmetic, and algebraic geometry. Endoscopy, a technique that allows to study certain instances of functoriality, was initiated by Langlands and Shelstad almost forty The most recent highlight of the theory is the classification of the automorphic spectrum of orthogonal, symplectic (Arthur) and unitary groups (Mok) in terms of the automorphic spectrum of GL(n). The proof relies on highly-sophisticated tools, such as the stable version of the twisted Arthur-Selberg trace formula. New techniques and methods are needed for further study of fonctoriality that complements or goes beyond endoscopy. The common motivation for the conference “Relative Trace Formula, Periods and L_Functions and Harmonic Analysis” is to study the |
- Hervé Jacquet (Columbia University)
- Jean-Pierre Labesse (Prof. Emeritus, Aix-Marseille Université)
- Colette Moeglin (IMJ-PRG Paris)
- Pierre-Henri Chaudouard (Université Paris Diderot)
- Volker Heiermann (Aix-Marseille Université)
- Dipendra Prasad (TIFR Mumbai & Aix-Marseille Université)
- Yiannis Sakellaridis (Rutgers University Newark & National Technical University of Athens)
- James Arthur (University of Toronto) – VIDEO
Beyond endoscopy and elliptic terms in the trace formula
- Raphaël Beuzart-Plessis (CNRS, National University of Singapore) – VIDEO
The local Gan-Gross-Prasad conjecture for unitary groups
- Masaaki Furusawa (Osaka City University)
On special Bessel periods and the Gross-Prasad conjecture forSO(2n + 1) × SO(2)
- Wee Teck Gan (National University of Singapore) – VIDEO
Theta lifts of tempered representations and Langlands parameters
- Nadia Gurevic (Ben Gurion University)
Poles of the standard L-function for G2 and the image of functorial lifts
- Jeffrey Hakim (American University Washington DC)
Constructing Tame Supercuspidal Representation
- Michael Harris (IMJ-PRG Paris)
Special values of Rankin-Selberg L-functions and automorphic periods
- Atsushi Ichino (Kyoto University)
The automorphic discrete spectrum of Mp(2n)
- Dihua Jiang (University of Minnesota)
On the Central Value of Tensor Product L-functions and the Langlands Functoriality
- Wen-Wei Li (Chinese Academy of Science)
Prehomogeneous zeta integrals with generalized coefficients
- Nadir Matringe (Université de Poitiers)
Distinction of the Steinberg representation for GL(n) and its inner forms
- Fiona Murnaghan (University of Toronto) – VIDEO
Tame relatively supercuspidal representations
- Omer Offen (Technion-Israel Institute of Technology)
On gamma factors, root numbers and distinction
- Eric Opdam (University of Amsterdam)
On the spherical automorphic spectrum supported in the Borel subgroup
- Jean-Loup Waldspurger (CNRS, IMJ-PRG Paris)
Caractères des représentations de niveau 0
- Chen Wan (University of Minnesota)
Multiplicity one theorem for the Ginzburg-Rallis model
- Hang Xue (Max Planck Institute)
Approximating smooth transfer in Jacquet-Rallis relative trace formulas
- Shunsuke Yamana (Kyoto University)
On the lifting of Hilbert cusp forms to Hilbert-Siegel cusp forms
- Shou-Wu Zhang (Princeton University) – VIDEO
Congruent number problem and BSD conjecture
- Wei Zhang (Columbia University)
Cycles on the moduli of Shtukas and Taylor coefficients of L-functions
- Michal Zydor (Weizmann Institute of Science)
The Jacquet-Rallis trace formula
Catégories