Représentations maximales et de Schottky

Carte non disponible
Speaker Home page :
Speaker :
Speaker Affiliation :

()

Date/heure
Date(s) - 04/06/2018
14 h 00 min - 15 h 00 min

Catégories Pas de Catégories


Les espaces de représentations maximales du groupe fondamental d’une surface sont des généralisations de l’espace de Teichmüller. Ces représentations sont à valeurs dans Sp(2n,R) (ou plus généralement dans un groupe de Lie de type hermitien). Je définirai une notion de groupe de Schottky agissant sur l’espace des Lagrangiens dans R^(2n) et j’expliquerai comment ces groupes correspondent aux images de représentations maximales d’une surface à bord non vide. Cette caractérisation permet de construire des domaines fondamentaux pour l’action propre et cocompacte d’une représentations maximale sur un ouvert dense de l’espace projectif de dimension (2n-1). Le contenu de cet exposé provient d’une collaboration avec Nicolaus Treib.

http://www.ihes.fr/~/jburelle/


Retour en haut 

Secured By miniOrange