Systèmes dynamiques finis, jeux des chapeaux et théorie des codes

Carte non disponible

Date/heure
Date(s) - 15/05/2018
11 h 00 min - 12 h 00 min

Catégories


Un système dynamique fini (FDS) est un réseau d’entités qui interagissent au cours du temps. Chaque entité a un état parmi q possibles, pour q ≥ 2 donné, qui varie en fonction du temps et des états d’autres entités. Formellement, un FDS est une fonction f de {0,1,…,q-1}n dans lui-même (n étant le nombre d’entités); un FDS avec q=2 est ainsi un réseau booléen. L’un des problèmes majeurs de l’étude des FDS est d’étudier la dynamique du réseau en fonction de son graphe d’interaction, qui indique les relation d’influence parmi les entités.
Ici nous nous intéressons à l’existence d’un FDS f stable, i.e. tel que pour tout état x, son successeur f(x) a au moins une coordonnée égale à celle de x. Nous relions ce problème au jeu des chapeaux de Winkler et nous utilisons la théorie des codes pour construire des FDS stables avec des graphes d’interaction très particuliers et contre-intuititifs.

http://community.dur.ac.uk/m.r.gadouleau/

Olivier CHABROL
Posts created 14

Articles similaires

Commencez à saisir votre recherche ci-dessus et pressez Entrée pour rechercher. ESC pour annuler.

Retour en haut
Secured By miniOrange