Weighted Sobolev Spaces on Weighted Metric Measure Spaces

Carte non disponible

Date/heure
Date(s) - 07/10/2014
11 h 00 min - 12 h 00 min

Catégories


We investigate weighted Sobolev spaces on metric measure spaces $(X, d, m)$. Denoting by $\rho$ the weight function, we compare the space $W^{1,p} (X, d, \rho m)$ (which always concides with the closure $H^{1,p} (X, d, \rho m)$ of Lipschitz functions) with the weighted Sobolev spaces $W_{\rho}^{1,p} (X, d, m)$ and $H_{\rho}^{1,p} (X, d,m)$ defined as in the Euclidean theory of weighted Sobolev spaces. Under mild assumptions on the metric measure structure and on the weight we show that $W^{1,p}(X, d, \rho m) = H_{\rho}^{1,p} (X, d, m)$. We also adapt the results proved by Muckenhoupt and the ones proved by Zhikov to the metric measure setting, considering appropriate conditions on $\rho$ that ensure the equality $W_{\rho}^{1,p} (X, d, m) =H_{\rho}^{1,p} (X, d, m)$. This is a joint work with Luigi Ambrosio and Gareth Speight.

Webpage“>Webpage

Olivier CHABROL
Posts created 14

Articles similaires

Commencez à saisir votre recherche ci-dessus et pressez Entrée pour rechercher. ESC pour annuler.

Retour en haut
Secured By miniOrange