This is an old revision of the document!


ARTICLES PARUS OU ACCEPTES


  1. M. Bostan, F. Poupaud, Periodic solutions of the Vlasov-Poisson system with boundary conditions, Math. Models Methods Appl. Sci., Vol. 10, No. 5, pp.651-672 (2000) vlpoi_1_3.pdf
  2. M. Bostan, F. Poupaud, Periodic solutions of the 1D Vlasov-Maxwell system with boundary conditions, Math. Methods Appl. Sci., Vol. 23, No. 14, pp.1195-1221 (2000) vl_max_1d.pdf
  3. M. Bostan, Numerical study by a controllability method for the calculation of the time periodic solutions of the Maxwell and Vlasov-Maxwell systems, M2AN Math. Model. Numer. Anal., Vol. 35, No. 1, pp.165-189 (2001) m2an976.pdf
  4. M. Bostan, Periodic solutions for evolution equations, Electron. J. Differential Equations, Monograph 3, 41pp. (2002) main_pereveq.pdf
  5. M. Bostan, Permanent regimes for the 1D Vlasov-Poisson system with boundary conditions, SIAM J. Math. Anal., Vol. 35, No. 4, pp.922-948 (2003) main_pervlapoi1d.pdf
  6. M. Bostan, Existence and uniqueness of the mild solution for the 1D Vlasov-Poisson initial-boundary value problem, SIAM J. Math. Anal., Vol. 37, No. 1, pp.156-188 (2005) main_univlapoi1d.pdf
  7. M. Bostan, Boundary value problem for the three dimensional time periodic Vlasov-Maxwell system, J. Comm. Math. Sci., Vol. 3, No. 4, pp.621-663 (2005) main_pervlamax3d.pdf
  8. M. Bostan, Almost periodic solutions for first order differential equations, Differential Integral Equations, Vol. 19, No. 1, pp.91-120 (2006) main_almperode.pdf
  9. M. Bostan, P. Hild, Starting flow analysis for Bingham fluids, Nonlinear Anal., Vol. 64, No. 5, pp.1119-1139 (2006) bingham.pdf
  10. M. Bostan, Asymptotic behavior of weak solutions for the relativistic Vlasov-Maxwell equations with large light speed. Convergence toward weak solutions for the classical Vlasov-Poisson equations, J. Differential Equations, Vol. 227, No. 2, pp.444-498 (2006) main_vlamaxtovlapoi.pdf
  11. M. Bostan, Boundary value problem for the N dimensional time periodic Vlasov-Poisson system, Math. Methods Appl. Sci., Vol. 29, No. 15, pp.1801-1848 (2006) main_pervlapoind.pdf
  12. M. Bostan, S. Labrunie, On the harmonic Boltzmannian waves in laser-plasma interaction, J. Phys. A Math. Gen. Vol. 39, No. 37, pp.11697-11706 (2006) art20juin.pdf
  13. M. Bostan, E. Sonnendrücker, Periodic solutions for nonlinear elliptic equations. Applications to charged particles beam focusing systems, M2AN Math. Model. Numer. Anal., Vol. 40, No. 6, pp.1023-1052 (2006) main_envelopequ.pdf
  14. M. Bostan, G. Namah, Time periodic viscosity solutions of Hamilton-Jacobi equations, Commun. Pure Appl. Anal., Vol. 6, No. 2, pp.389-410 (2007) main_perhamjac.pdf
  15. M. Bostan, Mild solutions for the relativistic Vlasov-Maxwell system for laser-plasma interaction, Quart. Appl. Math., Vol. 65, No. 1, pp.163-187 (2007) main_laserplasma1.pdf
  16. M. Bostan, Mild solutions for the one dimensional Nordström-Vlasov system, Nonlinearity, Vol. 20, No.5, pp.1257-1281 (2007) main_vlanor1d.pdf
  17. M. Bostan, Stationary solutions of the 1D Vlasov-Maxwell equations for laser-plasma interaction, Indiana Univ. Math. J., Vol. 56, No. 2, pp.581-613 (2007) main_laserplasma2.pdf
  18. M. Bostan, Weak solutions for the Vlasov-Poisson initial-boundary value problem with bounded electric field, Chinese Ann. Math., Vol. 28, No. 4, pp.389-420 (2007) main_boundedelectric.pdf
  19. M. Bostan, The Vlasov-Maxwell system with strong initial magnetic field. Guiding-center approximation, SIAM J. Multiscale Model. Simul., Vol. 6, No. 3, pp.1026-1058 (2007) main_gyrokinetic1.pdf
  20. M. Bostan, T. Goudon, Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one-half dimensional case, Kinetic Related Models, Vol. 1, No. 1, pp.139-169 (2008) main_parabvmfp1d.pdf
  21. M. Bostan, Homogenization of the 1D Vlasov-Maxwell equations, IMA J. Appl. Math., Vol. 73, No. 3, pp.539-555 (2008) main_homvlamax1d.pdf
  22. M. Bostan, T. Goudon, Electric high-field limit for the Vlasov-Maxwell-Fokker-Planck system, Ann. Inst. H. Poincaré Anal. Non Linéaire, Vol. 25, No. 6, pp.1221-1251 (2008) main_highfieldvm.pdf
  23. M. Bostan, Finite speed propagation of the solutions for the relativistic Vlasov-Maxwell system, Nonlinear Anal., Vol. 69, No. 12, pp.4365-4379 (2008) main_finitespeed.pdf
  24. M. Bostan, P. Hild, Weak formulations and solution multiplicity of equilibrium configurations with Coulomb frictions, Math. Model. Nat. Phenom., Vol. 4, No.1, pp.147-162, Modelling and numerical methods in contact mechanics (2009) bostan_hild.pdf
  25. M. Bostan, E. Canon, P. Hild, On asymptotic properties for some parameter-dependent variational inequalities, Nonlinear Anal., Vol. 70, No. 4, pp.1663-1678 (2009) main_torsion.pdf
  26. M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., Vol. 61, No. 2, pp.91-123 (2009) main_gyrokinetic2.pdf
  27. M. Bostan, N. Crouseilles, Convergence of a semi-Lagrangian scheme for the reduced Vlasov-Maxwell system for laser-plasma interaction, Numer. Math., Vol. 112, pp.169-195 (2009) main_convsemila.pdf
  28. M. Bostan, J. A. Carrillo, Global solutions for the one dimensional Water-Bag model, Commun. Math. Sci., Vol. 7, No. 1, pp.129-141 (2009) main_waterbag.pdf
  29. M. Bostan, Analysis of a particle method for the one dimensional Vlasov-Maxwell system, Numer. Methods Partial Differential Equations, Vol. 25, No. 4, pp.757-782 (2009) main_partmethvp.pdf
  30. M. Bostan, Stationary solutions for the one dimensional Nordström-Vlasov system, Asymptot. Anal., Vol. 64, No. 3-4, pp.155-183 (2009) main_stavlanor1d.pdf
  31. M. Bostan, Permanent regimes for the Vlasov-Maxwell equations with specular boundary conditions, Phys. A Vol. 42, No. 35, 20 pp. (2009) main_specular.pdf
  32. M. Bostan, Boundary value problem for the stationary Nordström-Vlasov system, J. Korean Math. Soc. Vol. 47, No. 4, pp.743-766 (2010) main_stavlanor3d.pdf
  33. M. Bostan, Collisional models for strongly magnetized plasmas. The gyrokinetic Fokker-Planck equation, Libertas Math., Vol. 30, pp.99-117 (2010) main_fokplagyr.pdf
  34. M. Bostan, V. Lleras, Some remarks on time-dependent variational problems and their asymptotic behaviour, Nonlinear Anal., Vol. 73, No. 6, pp.1820-1833 (2010) main_quasistatic.pdf
  35. M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, Vol. 249. pp.1620-1663 (2010) main_singtranequ.pdf
  36. M. Bostan, I. M. Gamba, T. Goudon, The linear Boltzmann equation with space periodic electric field, Amer. Math. Soc. Transl. Ser. 2, Vol. 229, No. 64, pp.51-66 (2010) main_linperbol.pdf
  37. M. Bostan, Gyro-kinetic Vlasov equation in three dimensional setting. Second order approximation, SIAM J. Multiscale Model. Simul., Vol. 8, No. 5, pp.~1923-1957 (2010) main_centreguide3d.pdf
  38. M. Bostan, I. M. Gamba, T. Goudon, A. Vasseur, Boundary value problems for the stationary Vlasov-Boltzmann-Poisson equation, Indiana Univ. Math. J., Vol. 59, No. 5, pp.1629-1660 (2010) main_bolvlapoi.pdf
  39. M. Bostan, C. Negulescu, Mathematical models for strongly magnetized plasmas with mass disparate particles, Discrete and Continuous Dynamical Systems, Series B, Vol. 15. No. 3, pp.513-544 (2011) main_dispmass.pdf
  40. M. Bostan, I.M. Gamba, Impact of strong magnetic fields on collision mechanism for transport of charged particles, J. Stat. Phys., Vol. 148, No. 5, pp.856-895 (2012) arxiv1205.2327.pdf
  41. M. Bostan, Transport of charged particles under fast oscillating magnetic fields, SIAM J. Math. Anal., Vol. 44, no. 3, pp.1415-1447 (2012) main_highfreqmagn.pdf
  42. M. Bostan, J.-A. Carrillo, Asymptotic fixed-speed reduced dynamics for kinetic equations in swarming, Math. Models Methods Appl. Sci., Vol. 23, No. 13, pp.2353-2393 (2013) main_swarm.pdf
  43. M. Bostan, Strongly anisotropic diffusion problems; asymptotic analysis, J. Differential equations, Vol. 256, pp.1043-1092 (2014) yjdeq7334.pdf
  44. M. Bostan, C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetic confinement. Part I: the linear Boltzmann equation}, Quart. Appl. Math., Vol. LXXII, No. 2, pp.323-345 (2014) main_fokplalangyr_1.pdf
  45. M. Bostan, C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetic confinement. Part II: the Fokker-Planck-Landau equation, Quart. Appl. Math., Vol. LXXII, No. 3, pp.513-548 (2014) main_fokplalangyr_2.pdf
  46. M. Bostan, On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields, Discrete Contin. Dyn. Syst. Ser. B, Vol. 20. No. 2, pp.339-371 (2015) main_colbea.pdf
  47. M. Bostan, Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime, SIAM J. Math. Anal., Vol. 48, No. 3, pp.2133-2188 (2016) main_twoscale.pdf
  48. M. Bostan, High magnetic field equilibria for the Fokker-Planck-Landau equation, Ann. Inst. H. Poincaré Anal. Non Linéaire (2016), Vol. 33 No. 4, pp.899-931 (2016) main_gyrflumod.pdf
  49. M. Bostan, A. Finot, The effective Vlasov-Poisson system for the finite Larmor radius regime, SIAM J. Multiscale Model. Simul., Vol. 14, No. 4, pp.1238-1275 (2016) main_effvlapoi.pdf
  50. T. Blanc, M. Bostan, F. Boyer, Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach, Discrete Contin. Dyn. Syst. Ser. A., Vol. 37, No. 9, pp.4637-4676 (2017) main_singparstif.pdf
  51. M. Bostan, J.-A. Carrillo, Reduced fluid models for self-propelled populations, interacting through alignment, Math. Models Methods Appl. Sci., Vol. 27, No. 7, pp.1255-1299 (2017) main_swarmfluid.pdf
  52. M. Bostan, A. Finot, The finite Larmor radius regime : collisional setting and fluid models, accepté dans Commun. Contemp. Math. preprint https://hal.archives-ouvertes.fr/hal-01706310 (2018) main_colfinlarrad.pdf
  53. T. Blanc, M. Bostan, Multi-scale analysis for highly anisotropic parabolic problems, accepté dans Discrete Contin. Dyn. Syst. Ser. B, preprint https://hal.archives-ouvertes.fr/hal-01654430 (2018) main_singpara.pdf
  54. M. Bostan, Asymptotic behavior for the Vlasov-Poisson equations with strong external magnetic field. Straight magnetic field lines, accepté dans SIAM J. Math. Anal., preprint https://hal.archives-ouvertes.fr/hal-01683869 (2018) main_vlapoigyr2d.pdf

—-


COMPTES RENDUS ACADEMIE SCIENCE PARIS


  1. M. Bostan, F. Poupaud, Solutions périodiques du système de Vlasov-Poisson avec conditions aux limites, C. R. Acad. Sci. Paris, Sér. I Math. 325, pp.1333-1336 (1997) note.pdf
  2. M. Bostan, Solutions périodiques des équations d'évolution, C. R. Acad. Sci. Paris, Sér. I Math. 332, pp.401-404 (2001) cri00459.pdf
  3. M. Bostan, Solutions périodiques en temps des équations de Vlasov-Maxwell, C. R. Acad. Sci. Paris, Sér. I Math. 339, pp.451-456 (2004) main_note_pervlamax3d.pdf
  4. M. Bostan, Convergence des solutions faibles du système de Vlasov-Maxwell stationnaire vers des solutions faibles du système de Vlasov-Poisson stationnaire quand la vitesse de la lumière tend vers l'infini, C. R. Acad. Sci. Paris, Sér. I Math. 340, pp.803-808 (2005 main_note_vlamaxtovlapoi.pdf
  5. M. Bostan, G. Namah, Remarks on bounded solutions of steady Hamilton-Jacobi equations, C. R. Acad. Sci. Paris, Sér. I Math. 347, No. 15-16, pp.873-878 (2009) main_steadyhamjac.pdf
  6. M. Bostan, C. Caldini-Queiros, Finite Larmor radius approximation for collisional magnetized plasmas, C. R. Acad. Sci. Paris, Sér. I Math. 350, pp.879-884 (2012) main_gyrbollin.pdf
  7. M. Bostan, A. Finot, M. Hauray, The effective Vlasov-Poisson system for strongly magnetized plasmas, C. R. Acad. Sci. Paris, Sér. I Math. Vol. 354, No. 8, pp.771-777 (2016). revision_finlarvlapoi.pdf




PROCEEDINGS


  1. M. Bostan, G. Namah, Time periodic viscosity solutions of Hamilton-Jacobi equations, Applied Analysis and Differential Equations, World Sci. Publ., Hackensack, NY, pp.21-30 (2007)
  2. M. Bostan, Asymptotic regimes for plasma physics with strong magnetic fields, French-Chinese Institute on Applied Mathematics, Series in Contemporary Applied Mathematics, 15 Higher Education Press Beijing, World Sci. Publ. Singapore, pp.56-85 (2010)
  3. M. Bostan, Gyro-kinetic models for strongly magnetized plasmas with general magnetic shape, Discrete and Continuous Dynamical Systems, Series S., Vol. 5, No. 2, pp.257-269 (2012)




ARTICLES SOUMIS


  1. M. Bostan, A. Finot, The finite Larmor radius regime for the Vlasov-Poisson equations. The three dimensional setting with non uniform magnetic field, preprint https://hal.archives-ouvertes.fr/hal-01706309 (2018)
  2. M. Bostan, Asymptotic behavior for the Vlasov-Poisson equations with strong external magnetic field. Straight magnetic field lines, preprint https://hal.archives-ouvertes.fr/hal-01683869 (2018)
  3. P. Aceves-Sánchez, M. Bostan, J.A. Carrillo, P. Degond, Hydrodynamic limits for kinetic flocking models of Cucker-Smale type, en révision Math. Biosci. Eng., preprint https://arxiv.org/abs/1901.11132 (2019)
  4. M. Bostan, Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part I : well prepared initial conditions, preprint https://hal.archives-ouvertes.fr/hal-02088870 (2019)
  5. M. Bostan, Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field. Part II : general initial conditions, preprint https://hal.archives-ouvertes.fr/hal-02047472 (2019)




ARTICLES EN PREPARATION


  1. M. Bostan, J.A. Carrillo, Fluid models with phase transition for kinetic equations in swarming
blog/start.1557352969.txt.gz · Last modified: 2019/05/09 00:02 by mbostan
Recent changes RSS feed Donate Powered by PHP Valid XHTML 1.0 Valid CSS Driven by DokuWiki